
NASA Contractor Report 201699

ICASE Report No. 97-22

/

/U- L.--_ (i;

th

;ARY

OUT-OF-CORE STREAMLINE VISUALIZATION

ON LARGE UNSTRUCTURED MESHES

Shyh-Kuang Ueng
K. Sikorski

Kwan-Liu Ma

NASA Contract No. NAS1-19480

May 1997

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-0001





Out-Of-Core Streamline Visualization on Large
Unstructured Meshes

Shyh-Kuang Ueng t
K. Sikorski

Department of Computer Science

University of Utah

Salt Lake City, Utah 84112

Kwan-Liu Ma ¢

ICASE

Mail Stop 403

NASA Langley Research Center

Hampton, Virginia 23681

Abstract

It's advantageous for computational scientists to have the capability to perform interactive

visualization on their desktop workstations. For data on large unstructured meshes, this

capability is not generally available. In particular, particle tracing on unstructured grids can

result in a high percentage of non-contiguous memory accesses and therefore may perform

very poorly with virtual memory paging schemes. The alternative of visualizing a. lower

resolution of the data degrades the original high-resolution calculations.

This paper presents an out-of-core approach for interactive streamline construction on

large unstructured tetrahedral meshes containing millions of elements. The out-of-core al-

gorithm uses an octree to partition and restructure the raw data. into subsets stored into

disk files for fast data retrieval. A memory management policy tailored l.o the streamline

calculations is used such that during the streamline construction only a very small amount

of data are brought into the main memory on demand. By carefully scheduling computation

and data fetching, the overhead of reading data from the disk is significanlly reduced and

good memory performance results. This out-of-core algorithm makes possible interactive

streamline visualization of large unstructured-grid data sets on a single mid-range worksta-

tion with relatively low main-memory capacity: ,5-20 megabytes. Our test results also show

that this approach is much more efficient than relying on virtual memory and operating

system's paging algorithms.

_This research was supported in part. by the National Aeronautics and Space Administration under
NASA contract NAS1-19480 while the authors were in residence at. the Institute for Computer Applications
in Science and Engineering (I(?ASE), NASA Langley Research Center, Hampton, VA 23681-0001.





1 Introduction

Most visualization software tools have been designed for data that can fit into the main men>

ory of a single workstation. For many scientific applications, data at the desirable accuracy

overwhelm the memory capacity of the scientist's desk-top workstation. This is particu-

larly true for data. obtained from three dimensional aerodynamics calculations, where very

fine unstructured tetrahedral meshes are needed to model arbitrarily complex configurations

such as an airplane. Although adaptive meshing techniques can be applied to reduce the

resolution of the meshes, tile resulting meshes may contain tens of millions of t.etrahedral

cells.

Rapidly increasing CPU performance and memory capacity are beginning to allow sci-

entist to study data. at. such resolutions. Many scientists now have access to workstations

with 500 mega.bytes to one gigabyte of memory which are capable of visualizing millions

of tetrahedra.1 cells. But the same capability also allows scientists to model problems at

even greater resolution. Moreover, not every scientist has constant access to such high-end

workstations.

To solve this problem, previous research has mainly focused on the use of parallel and dis-

tributed computers, and nmltiresolution data representations. For exa.mple, pV3 [3] (parallel

Visual3) breaks up the problem domain in space and places each partition on an individual

workstation; streamlines are then calculated in a distributed, interactive manner. In pa.rtic-

ular, pV3 can couple visualization calculations with the simulation. This approach is very

attractive to scientists in an open, distributed computing environment and has also been

shown to work well on a distributed-memory parallel computer like the IBM SP2 [4].

Another popular approach is to make use of a supercomputer like a CRAY for visual-

ization calculations and a. high-end graphics workstation for displaying the streamlines. For

streamline visualization, this approach is preferable to the distributed approach since stream-

line calculations do not parallelize well. Finally, multiresolution data representations allow

the user to explore the data at. a. lower resolution according to the computer's performance.

but they are still memory-limited at the highest resolutions.

More recently, visualization software companies [1] as well as corporate research labora.-

tories [11] have begun to look into this problem and attempted to provide viable solutions

for their software products. While their solutions might be for more advanced graphics

workstations and more general visualization purpose, ours, an oul-of-core: approach, intends

to enable interactive stre:amlin_ visualization of large unstructured grid data on mid-range

workstations or even PC-class machines with only a. moderate amount of main memory.



1.1 Why Out-Of-Core?

0ut-of-core processing is not new and in fact has long been used to cope with large data.

Many computational problems in engineering and science involve the solution of an extremely

large linear system that does not fit into a computer's main memory. Using an out-of-core

method is the only solution in the absence of large memory space and parallel computers.

Another example is from database applications; a large database can only be constructed

with an out-of-core approach.

Will all operating system be smart enough to handle memory contention caused by using

brute-force algorithms for data visualization, solving linear systems, or database construc-

tion? The answer is no. Modern operating systems are good at managing multiple jobs

and providing time sharing via paging and swapping. But they cannot make more memory

appear out of nowhere. In particular, when data access is random and irregular, typical in

unstructured data visualization, poor locality of referencing leads to thrashing in the virtual

memory.

For example, unstructured-grid data generally store coordinates and solution values for

each node (a grid point), and node indices for both triangular faces and tetrahedral cells.

As shown in Figure 1, these node, face and cell data are not. stored contiguously in disk

space according to their spatial relationship. During visualization calculations, accessing two

neighboring cells may invoke references farther apart in disk space. Consequently, constant

paging is forced to fetch disk resident data and this memory overload eventually becomes

I/O overload.

While moderate paging is common, desperation swapping is often intolerable. It has

been evident that many commercial and free visualization software packages fail to handle

large data sets on an average workstation. This research has been motivated by our local

scientists" need of an interactive visualization mechanism to study their data at the desirable

resolution, and partich tracm 9 is one of the most important capabilities requested.

1.2 An Out-Of-Core Streamline Visualization Algorithm

Streamlines are the paths of massless particles released in steady flow fields [15]. Plotting

streamlines is a fundamental technique for visualizing vector field data sets generated from

scientific computations [7, 9, 14]. Streamlines can be extended to construct other types of

objects, like streamtubes and streamribbons [2, 5, 14]. A streamline is usually constructed

by using stepwise numerical integration. The integration involves the following steps:

1. Selecting of an initial point.

'2. Locating lhe cell containing the point.
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Figure 1: A typical data structure for unstructured meshes. Normally, node, face, and cell

data are stored as separate chunks. Accessing two cells next to each other ill the spatial

domain may invoke references to the corresponding data. items scattering across the disk

space.



3. Interpolating the vector field and calculating a new point by using a numerical inte-

gration method.

4. If the termination condition is not met, go to step 2.

Our out-of-core algorithm has been designed based on the following observations:

• Streamline calculations are incremental and local. Each integration step only needs a

very small amount of data, one or two tetrahedral cells.

Calculating multiple streamlines concurrently is cheaper than calculating one stream-

line after the other. This maximizes locality of reference which increases memory

performance dramatically.

Data. packing is essential to reduce the number of disk reads. I)ata should be packed

in such a way that fetching cells in a small neighborhood can be done with one disk

read.

It. is nmch more efficient to read small chunks of data from disk. Moving a larger chunk

of data from disk would likely disrupt the interactivity when a streamline is ready to

enter a neighboring chunk.

The resulting algorithm contains two steps: preprocessing and interactive strealnline con-

struction. The preprocessing step determines connectivity, calculates additional quantities

such as interpolation functions and coordinates transformation functions, restructures the

raw data, and stores all the information into a more compact octree representation on disk.

This step needs to be done only once. The second step requires a graphical user interface to

facilitate picking of seed points where tracing of streamlines begins. The interactive st.ream-

line construction step does not rely on the operating system to fetch the required data.

Instead, a. memory management policy is designed to effÉciently utilize a mininmm memory

space and fetch data from disk. Streamlines are integrated from octants to octants based on

the principles of preemption and time-sharing. In this way,, streamlines can be constructed

interactively by using only a few megabytes of memory space on a mid-range workstation

like a Sun SPARC-20.

The rest of the paper is organized as follows. Section 2 illustrates the data preprocessing

step. The streamline construction algorithm is described in Section 3 and the memory

management policy is explained in Section 4. Tests are performed to compare virtual memory

against our algorithm; to study the performance of the memory management policy, local

disk access and non-local disk access; and to measure average cost and overhead. _Ihe test

results are presented and discussed in Section 5, followed by some concluding remarks and

future research directions.



2 Data Preprocessing

Efficient visualization operations on unstructured-grid data can only be obtained with pre-

processing because of the irregularity of the mesh topology. To perform streamline visual-

ization, the two most important operations are:

1. identifying the tetrahedra cell containing the user specified seed point.

'2. computing velocity at. locations other than tile node points.

Fast. cell searching methods like the one presented in [9] need additional data. such as cell con-

nectivity infornaa.tion and coordinate transformation functions. These data, which are also

needed by the integration step, could be computed on the fly during streamline const.ructioi1.

but the computatioilal cost would then be too high for interactive visualization.

As flow solutions are only defined at node locations, interpolation must be used to com-

pute flow variable values at. other locations. To attain maximum efficiency at run time,

an interpolation function for each cell is also t)recomputed and stored with the data. For

tetra.hedral cells, we use the linear basis function in&rpolalion [(i, 14]. In summary, our

preprocessing step first, determines cell connectivity; then computes the coordinate transfor-

mation and interpolation flmctions for each cell; and finally partitions and reorganizes the

raw data with the computed data using an octree structure to facilitate fast. data re(rieval.

To achieve interactive visualization, we cannot avoid precomputing and storing some of these

data. The additional storage space required actually makes the out-of-core a.pproach even

more attractive. The issues and techniques for calculating transformation and interpolation

functions as well as connectivity information can be found in previous research [13, 14].

2.1 Data Partitioning

There are two approaches for partitioning unstructured data sets. The first approach is to

divide cells into totally disjoint groups. Since the data sets are unstructured, the geometric

shapes of the resulting groups are generally irregular. The advantage of this approach is

that no data redundancy is introduced. However, one of the disadvantages is that the

spatial relationship between groups is difficult to determine. Specifically, it. becomes difficult

to veri_ whether two groups are adjacent, and to identi_' the group where a specified point

is located.

The second approach is to partition the data set by superimposing a regular framework

on it. A subset is formed by grouping the cells which intersect o1" are contained within a

region of tile framework. The framework could be a. regular 3-D mesh, a Ir-u,ay tre'e or an

oclre_: [10]. Since the data sets are unstructured, a cell may intersect with several regions of

a. regular framework and thus data redundancy is inevitable with this al)proach.
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Partition of the Physical Domain The Corresponding Octree

Figure 2: Octree Data Partitioning.

A major advantage of the second approach is that the spatial information of subsets can

be easily' obtained. For example, if an octree: is employed as the framework of data partition,

the octant containing the seed point can be identified by searching the octree from tile root

to tile leaves within O(log N) steps, where N is the number of the octants. The neighbors of

an octant can also be found by applying this technique and one of these neighboring octants

contains the next point on the current, streamline.

In our out-of-core setting, octrees are used as the framework for the data partitioning

since unstructured grids are highly adaptive in both shape and resolution. Octrees have been

widely eml)loyed by many computer graphics and visualization a.pplications. It allows us to

refine the data partitioning in the regions where the grids are dense such that subsets are

relatively equal in data size (i.e. in terms of the number of tetrahedral cells). In Figure 2, a.

simple example of octree is shown. Note if the framework is a regular 3-D mesh, the above

searches may be completed in constant time. But a very, high resolution regular mesh must

be used to accommodate the original mesh's irregularity.

Based on an octree structure, the data. partitioning is carried out in a top-down manner.

First. the whole data set is considered as one octant. Then this octant is decomposed into

eight child octants by using three cutting planes perpendicular to the x, 9, and z axes. If the

number of tetrahedral cells in a child octant exceeds a pre-defined limit, the maximum oclant

size, this child octant is partitioned further. The above procedure is performed recursively

until all octants contain fewer cells than the maximum octant size. Tile ceils of an octant

are stored in a. file in our current implementation. This enables very straightforward access

to an octant, though a large number of files may be created when the mazimum octant size

is small. An alternative way is to store all octa.nts in a single file. This method nmst employ

an indexing algorithm if the sizes of octants are different and the number of octants is large.

Each octant stores the bounding box of the octant, the number of cells in the octant, the

center of the octanl., and the ID of the file used for storing cells in that octant as shown in

Figure 3. The center of tile octant is where the three cutting planes intersect. The position

of this point is set. to be the arithmetic average of the centers of all cells in tile octant, where

6



Number of Cells

Center of Octant

(x, Y, z)

File ID

Bounding Box

(xl,yl,zl) (x2,y2,z2)

',Poil_ters to Child OctantS
I I i

childO childl * * ° child7

Figure 3: Data Structure of an Octree Node

the ce:nter of a. cell is defined a.s tile arithnletic average of its vertices. This choice keeps the

size of the eight child octants at each level of the tree about the same.

The octree created represents the structure of the data partitions and is stored in a file

after the partitioning is completed. This file is read in first at. the beginning of a streamline

visualization session. A typical octree requires under one n_egabyte of storage space. The

structure of the octree nodes allows an efficient, systematic way of retrieving the needed data

for calculating the streamlines.

2.2 Out-Of-Core Data Preprocessing

For the sizes of data we consider, the data preprocessing step must also be performed in an

out-of-core manner. This is done by allocating eight buffers in memory and opening eight

disk files t.o store cells read from the input data file. At the top level, these eight buffers

aim disk files correspond to the root's eight child octants and their bounding regions. Then

cells are read into memory iucrementally and a cell is assigned to a. buffer if it intersects

the corresponding bounding region. As mentioned previously, a cell may be assigned t.o

more than one buffer. Whenever a. buffer is full, the cells in the buffers are dumped to the

corresponding disk file. After all cells are processed, each octant size is examined. If an

octa.nt has more cells than the maximum octant size:, another round of partitioning proceeds.

Eight more buffers and disk files are created.

After the oct.ree is completely built, the next step is to find cell connectivities and cal-

culate the coetficients of the coordinate transformation as well as interpolation functions.

One octant file is processed at a. time. Note that the maximtlm oclaTd size determines the

number of octant.s generated. A larger octant size implies less data redundancy and thus

less disk space used. But the problenl with keeping large octants in the main memory is

that it is then harder to achieve consistent performance. 1Remember that for streamline

visualization moving many smaller data. clmnks is generally less expensive than moving a



few larger piecessincenormally only a small portion of eachdata chunk is accessedby the
streamline calculation. Moreover,a higher hit rate would be achievedwith many smaller
octants in core. On the other hand, if the maximum oetant size is relatively small, a larger
number of octants are generated. The preprocessingstep would becomemore expensive.
The data redundancy becomeshigher, and more disk spaceis required to store tile data.
ttowever, moreoctantscan be resident in the main memory during streamlineconstructions
to attain morecousistentperformance.Test resultswill be providedin section5 to showhow
selectionsof the maximum octant siz_ influence tile performance of tile out-of-core method.

3 Streamline Construction

Two operations are repeatedly performed during integrating streamlines. The first one is to

compute new positions of streamlines and the second one is to move the required data from

disk into main memory if it is not already there. Compared with CPU speed and memory

access time. disk l/O is relatively slow. In order to narrow the gap, the computation and the

data-fetching have to be carefully scheduled. Furthermore, the memory space is a limited

resource. It is important to fully utilize the memory space to store more information for

calculation such that comi)utation can be carried out with minimum interruption.

In order to achieve these goals, the out-of-core streamline construction algorithm is based

on two fim(lamental operating system concepts: pr_:emption and tim_-shariT_g [12]. Based on

the availat)ility of the data, a streamline under construction may be in any of the following

three states: u_aiting, ready, or tracing. When the needed octant is in the main memory, the

streamline is in the ready state, and it can enter the tracing state; that is, its next positions

can be calculated. Otherwise, the streamline is in the waiting state, waiting for the needed

octant to be brought in from the disk. When the memory space occul)ied by an octant is no

longer involved in computing new streamline positions, it can be released and reuse([.

In short, the out-of-core program following the preprocessing stage consists of the follow-

ing stet)s:

• Initialization:

- Read the octree created in the data partitioning step from the disk.

- Allocate memory space for holding octants.

- Create data structures needed in the streamline construction.

• ('onstruction of the streamlines:

1. Get the initial positions selected by the user.

"2. tdentifv the octants where the streamlines enter.

8
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Figure 4: An Octant Table

3. Fetch octa,nts into the main memory.

4. Integrate all streamlines with their octants in the main memory until all of t.henl

leave the octants.

5. Go back t.o 2, if a temlina.tion condition for any of the st.t'eamlines is not met.

3.1 Initialization

The initialization step first reads the octree fl'om the disk and creates the following data

structures:

• an octa,nt, table t.o kee l) track of the oct.ants in the main memory,

• three queues for scheduling computations.

The octant table is used to store information about octants which are resident in inain

memory. One octant is associated with each entry in the octa.nt table. Each entry contains

four fields. Figure 4 shows a table of N entries. The first field is a flag indicating whether

this entry is allocated to an octant or not. The second field contains the ID of the octant.

The third field stores the size of the memory space allocated to the octant. The last one is

a pointer t,o the starting position of the octant.

Three queues are created to keep data about the streamlines under construction. These

queues are named the waiting queue, the ,'_'a:ly queue, and the finished queue. A streamline

is kept in the waiting queue if it enters an octant which is not resident in the rnain memory.

Otherwise, it. is in the ready' queue. Once the streamline is completely integrated, it. is stored

in the finished queue. These three queues and the octant table are employed to schedule

streamline construction and octant-fetching such that more streamlines can be processed a.t

the same time by using less inemory space.

9
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Figure 5: Data Structures of a Streamline

3.2 Construction

(riven an initia.1 seed point, a slreamlin_ object is created. The streamline object stores a

list. of streamline positions, the number of points in the streamline and tile II) of the octant

containing the most recently integrated position of the streamline. For each streamline point,

tile coordinates, tile velocity magnitude, the angular rotation rate: of the' flow, and tile local

.[tou, ¢:a'pan_ion ral_ [14] are recorded. The data structure of a streamline object is depicted

in Figure 5. Initially, the ID's of tile octants which contain the initial positions are identified

and entered into the streamline objects, and all streamline objects are kept. in the waiting

(tllelle.

In the next step of the streamline construction, the streamline objects in the waiting

queue are examined one by one. As long as there is still space in tile pre-allocated main

memory, the octant identified by a streamline object is read into the octant table. Once the

octant of a streamline object has been read, the streamline object is moved from the waiting

queue to lhe ready queue.

Subsequently, the streamline objects in tile ready queue are processed one by one. The

fourth order Runge-Kutta method [8] is used to calculate new streamline points. At the

same time, the angular rotational rate and the local flow expansion rate are computed if

streamribbons and streamtubes are to be constructed [13]. When a streamline leaves an

octant, the octant containing tile new position of the streamline is identified. Then the

octant table is searched to check whether this octant is already in the main nlenlorv or not.

If it is, the data cell containing the current streamline position is found, and the streamline

construction continues. If it. is not, the streamline object is moved to the end of the waiting

(tuetm. and another streamline object is selecled from the ready queue for processing. If the

10
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streamline reaches a physical domain I)oundary or its current time st,e I) exceeds a pre-defined

limit, tile streamline object is deleted from the ready queue and stored in the finished queue.

Once the ready queue is empty, tile octants in the main memory are no longer involved

in the streamline construction. The memory space occupied by them is released to a. free

space pool. Their octant table entries are marked as free. The waiting queue is searched,

and a new set of octants is fetched into the main memory. Then another round of streamline

construction begins. The streamline integration is completed when all streamline objects are

in the finished queue. An example illustrating the migration of streamline objects during

the streamline construction is depicted in Figure 6.

4 Memory Management

The oct.ants produced in the preprocessing stage may have differenl sizes. It. is therefore

unwise to use a fixed size for memory blocks, each of which holds an octant. For efficient

utilization of the memory space, a. memory management, policy is designed to support, the

out-of-core streamline visualization program. First., the size of the memory space dedicated

to tile out-of-core program is selected by tile user. Presently, this size is measured in number

of cells, and it. should be greater than the ma.ximum octant size. This memory space is

decomposed into memory blocks of different, sizes. The size of the memory blocks created is

determined by." two other parameters: the maximum octant size a.nd a parameter called the

block size: level. These two values can be either controlled by the user or set. automatically

based on information obtained from tile preprocessing step. The block size level represents

the number of different, block sizes. For example, if its value is one, then all blocks are of

the same size, which is equal to the maxinmn_ octant size. If it. is set. to k, the sizes of blocks

_s where s is the maximunl octa.nt size and 77.= 1 k.are _ , ...,

Tile blocks are created in a descending order of sizes; that is, the largest block is generated

first, then a block of tile second largest, size is created, and so on. During tile creation process,

11
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if the remaining memory space is too small for creating a block of a particular size, this size

is skipped, and a block of the next smaller size is to be created. However, if tile remaining

memory space is smaller than the smallest block size, then the process stops. If the smallest

block is created, then we re-run the process if the remaining memory space is large enough

for creating any blocks. All memory blocks created are then put into a fre( space pool. In

this pool, a table is created for book-keeping. Tile number of entries in this table equals

to the block size level. In each entry, a list of blocks of the same size is maintained. An

examt)h" of a. fl'ee space pool is shown in Figure 7, in which the block size level is three.

Before an octa.nt is fetched into the main memory, the size of the octant is retrieved from

the oclree. The free space pool is searched to find a. memory block that is large enough to

hold the octant. This searching starts a.t the list of the smallest blocks such that a best-fit

block may be found. Once a block is assigned to an octant, it is removed from the free space

pool. When this octant is no longer involved in computations, the memory block is released

to the free space pool.

The block size level is an important parameter determining memory utilization efficiency.

It. cannot be too small or too large; while the former results in a few large hlocks which are

space ineflicient to store smaller octants and would cause excessive octant felching, the latter

results in many smaller blocks which might, be too small and therefore never used. Some

tests have been run to study the effects of this parameter upon the out-of-core program. The

results will be presented in the next section.

5 Test Results

We tested the out-of-core visualization algorithm on an IBM RS6000 workstation with 128

megabytes of main memory as well as a Sun SPARC-20 workstation with 64 megal)ytes of

main memory. Note that our algorithms only need about 5-20 megabytes out of the 64/128

megal)ytes to achieve interactive visualization. The IBM workstation with larger rnemory

space allows us to compare the t)erformance of the out-of-core method with programs relying

on virtual memory management. In addition, three sets of tests are conducted on the Sun

workstalion. The first set of tests are used to reveal how the maximum octant size, the

12



memoryspacesizeand the block size level affect the overall performance of the out-of-core

program. In the second set of tests, the overhead produced by fetching data and scheduling

computations is recorded and analyzed. The third set studies the effect caused by storing

data in a non-local disk.

In all tests, wall clock time is used to measure the cost. All tests were run ill batch mode

and rendering and display time is not included. Currently, rendering is done in software but

the fast streamline construction rate and incremental software rendering make interactive

viewing of streamline formation possible.

5.1 The Out-Of-Core Method versus Virtual Memory

In order to reveal the strength of the out-of-core method, two streamline construction meth-

ods that rely oil virtual memory are implemented for testing. All three programs use the

same numerical method to integrate streamlines. The two virtual-nlemory-based methods

attempt to store as much data as possible in the main memory. In the first, program, a.

cell record contains four vertex indices and four neighboring cell indices. The size of a. cell

record is 32 bytes. The four neighboring cell indices of each cell record are calculated in

a preprocessing stage, though the coefficients of the coordinate transformation function are

computed on the fly during streamline construction. In the second progranl, a cell record

stores four vertex indices, four neighboring cell indices and a. 3 × 4 matrix in which the

coordinate transformation function coefficients are stored. That is, eight integers and 12

floats are kept in a ('ell record so the size of a cell record is 80 bytes. The neighboring

cell indices and the coordinate transformation function coefficients are pre-computed in the

preprocessing stage.

In the out-of-core program, each cell record holds the same information as the second

program. The maximum octant size is set to 20,000 cells, and a. memory space that is equal

to six times of the maxinmm octant size is dedicated to the program. The block size level is

set to three.

The data sets of the tests are artificially created by dividing a cube into one, two, three,

four, and five million tetrahedral cells. For all these sets, the memory requirement for storing

streamlines, vertices, and cell records is larger than the user space of the main memory.

For example, four million tetrahedral cells would require a.t least 128 megabytes while the

dedicated user space is under ten megabytes.

To generate the artificial data sets, the three components of the vector field are deter-

mined by the following formula:

u(x,y,z) = -0.5x- 6.0y,

c(x,y,z) = 6.0x- 0.59,

w(x,y,:) = -2.0z + 20.5.

13



Figure 8: Streamlinevisualizationof the artificial data set.

Table 1: VM-BasedMethod 1
data size initiate construct total
1M 15.40 917.08 932.48
2M 52.62 1043.60 1096.22
3M 484.72 1225.54 1710.26
4M 1295.91 1691.51 2987.42
5M 1638.83 1794.86 3433.69

Streamlinevisualization of this data set is shownin Figure 8. Data sets are stox'edon disk
in binary format. For eachdata set, one hundred streamlinesare constructed by using the
three programs. The maximum numberof time stepsfor eachstreamline is set to 5,000.

An IBM RS6000Model 560 workstation was usedfor the tests. This machinehas 128

megabytesof main memory and 512megabytesof pagingspace.Two costsaremeasuredby
usingwall clock time in seconds.The first one is the initialization cost which is mainly the
time to read ill the test data. Tile secondone is the cost of constructing 100streamlines.
Tile total cost is then calculated by'adding these two. The tests resultsare summarizedin
Figure9 in which logarithmic scaleis usedfor the y-axissothat very largeand small numbers
can be plotted in the window. The time breakdownof eachcaseis listed in Table 1, 2 and
3.

Coml)ared with the two virtual-memory-basedprograms,the performanceof the out-

14
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Figure 9: Out-of-core versus vm-based methods.

Table 2: \,"M-Based Method 2

data size initiate construct total

1M 25.90 80.98 106.88

2M 1367.86 608.55 1976.41

3M 216:_t.50 866.01 3029.51

4M - - -

5M - - -

Table 3: Out-Of-Core Method

data size initiate construct total

IM 1.71 23.77 25.48

2M 6.60 24.15 30.75

3M 10.14 24.16 34.30

4M 13.62 24.37 37.99

5M 16.44 24.46 40.90
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of-core program is up to almost two orders of magnitude better. Its initialization cost
growsmore slowly with the data size. Its streamline construction cost is small and about
constant. The virtual-menlory-based t_rogramstry to keep as much as data in the main
memory during streamlineconstruction. Our test results show a lot of time devoted to

allocating memory space and reading in data sets. When the data size is equal to two

million cells, the initialization cost grows dramatically, since the size of required memory

space already exceeds the size of the physical main memory space. The operating system

has to swap out data to the paging space to create memory space for the input data.. This

situation becomes worse when the data size is increased to three million cells. The second

program can not handle the data set with four" million cells. The operating system signals a

system error and quits the program before the initialization stage is completed. Therefore,

a - symbol is shown in Table '2.

The firsl virtual-memory-based program requires less memory space so it can handle

larger data sets. Itowever, the coefficients of the coordinate transformation functions are

computed on the fix; during streamline construction. ('.onsequently the cost of constructing

streamlines for this program is very high compared with the other two programs. The

inilialization costs of this program are tolerable when the data size is under three million

cells. Once the data size reaches four million cells, the initialization cost becomes too high.

The total ('()st is equal to 49 minutes and 47 seconds in this case. For the data set. with

five millions of cells, this program needs totally 57 minutes and 14 seconds to construct 100

streamlines, while the out-of-core program consumes less than 41 seconds to perform the

same operation. Therefore, the performance of the first and the second programs is not

acceptable for interactive visualization.

From the above test results, two important findings are: First, the virtual memory system

of the operating systein is not very helpful for this visualization application. Second, the

speed of constructing streamlines is severely degraded if the coefficients of the coordinate

transformation functions are not pre-computed. To achieve interactive visualization, these

is UO doub| that we must trade space for" time; in this case, we use less expensive disk space

and employ a memory management policy tailered to the streamline calculations.

5.2 The Maximum Octant Size, Size of the Memory Space, and

The Block Size Level

Three parameters influence the performauce of the out-of-core program. They are the maxi-

nmm octant size, the size of the memory space, and the block size level. Tests are conducted

on the Sun workstation to explore how these three parameters affect, the performano • of the

out-of-core program and to find an optimal combination of the three parameters. In the

tests, the maximum octant size is sel to 10,000, 20,000, 30,000, and 40,000 cells resl)ectively ,

16



whereeachcell is representedby 80 bytesof information as explained in Section5.1. The
sizesof memoryspaceare set to 4, 6, 8, and 10 times the maximum octant size. The block
sizelevelvariesfrom 1 to 8. The testsare performed asfollows:

For each value of the maximum octant size do:

• Subdivide the data set based on the maximum octant size.

• For each memory space size do:

- Create memory space.

- For each block size level do:

1 create free space pool based on the block size: level.

2 construct 100 streamlines.

3 measure and report the cost.

For convenience, a smaller data set of 1.78 million cells is used in these tests. This data

set comes from a wind tunnel simulation. Visualization results are shown in Figure 10.

Note that the streamtubes are software rendered. The computational cost for the data

partitioning and the preprocessing together is about 20 minutes on the same workstation.

Note that this cost depends on the maximum octant size. The data is stored in a local disk

of the workstation. The initial points of the 100 streamlines are randomly selected. The

maximum number of time steps of a streamline is 5,000.

The test results are shown in Figures 11, 12, 13 and 14. The costs of constructing

streamlines by using the same maximum octant size are shown in each individual figure.

The curves plotted in each figure represent the costs of using different sizes of main memory

space while varying the block size level.

By comparing the test results, we can conclude that (for this dataset) the maximum

octant size is the most essential parameter in the out-of-core program. The performance

of the program is significantly improved when this parameter is reduced from 30,000 cells

to 20,000 cells. The out-of-core program favors smaller octant size. It is obvious that the

costs decline when the memory space is increased from 4 times to 6 times of the maximunl

octant size, no matter what the maximum octant size is. However, further increasing the

memory space does not improve the performance. If the memory space is just 4 or 6 times of

the maximum octant size, the out-of-core program performs better when the block size level

increases. No significant improvement can be obtained by changing the block size level if

the memory space is larger. \Vitl_ our current setting, the best performance is thus obtained

when the maximum octant size is set to 10,000 cells and the memory space used is 6.4

megabytes, which is equivalent to 6 times the maximum octant size, and the block size level

is 3. The cost of constructing 100 streamlines is below 25 seconds.

17



Figure 10: Streamlinevisualization of the wind-tunnel data set.

In summary, the' out-of-core p_vgram performs better when the maximum octant size is

smaller, the allocated memory space is larger, aTtd the: block size level is higher. Nevertheless,

tile improvement made by changing these three parameters has its limits. The reasons can

be described as follows. In streamline construction, only a small portion of cells are visited

by the streamlines in an octant or even in the whole data set. The performance can not

be improved by just loading a larger number of cells into the main memory. Instead, it is

improved by loading those (:ells which are actually used in the integration of a streandine. By

using smaller maximum octant size, higher block size level and larger memory space, more

octants can stay in the main memory and the percentage of cells which are directly involved

in the integration becomes higher. Then more computation can be accomplished between

two consecutive octant-fetchings. The overhead of fetching-data is reduced. However, if

too many octants are read, the overhead of octant-fetching becomes high. The increase in

overhead then cancels out the gain fi'om more local computations, and the performance will

reach its limit.

5.3 Average Cost and Overhead

Another set, of tests are conducted on the Sun workstation to measure the overhead caused by

data-fetching and streamline scheduling and to study how the overhead affects the behavior

of the program. A data set, of 4.8 millions of tetrahedral cells is used. This data set is
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Figure 15: Streanfline visualization of tile airplane data set.

obtained fl'om a computational fluid dynamics simulation for the flow passing around an

airplane body. Visualization results are shown in Figure 15. Note that only a portion of the

airplane is modeled. About 407 megabytes of memory are required to store all the vertex

and the cell records of this data set.. The maximum octant size, the memory space size and

the block size level are fixed in tile tests. The maximum octant size is set. to 40,000 cells.

The memory space size is four times of tile maximum octant size, and the block size level is

three.

Test are performed for calculating 10-100 streamlines. Again, the maximum number of

time steps of a streamline is limited to .5,000. Both the total cost and the overhead are

measured in each test. The total cost includes the overhead and the cost of integrating the

streamlines. Test results are presented in Figure 16. The overhead includes the costs of

searching and fetching octants, selecting memory blocks, and scheduling streamline objects.

The total cost and overhead are divided by the total number of time steps used in the

streamline construction to obtain the average cost and the average overhead for a single step

computation. The average costs for a single step computation are shown in Figure 17.

Note that the average cost fluctuates in the test cases. This is because the seed points

are randomly selected and therefore the length of each streamline varies. Also note that the

average cost does not decrease much when more streamlines are constructed concurrently.

The increasing overhead due to streamline scheduling and octant searching cancels out most
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of the benefit from octant sharing.

Finally, the average overhead is divided by the average cost to produce the percentage

of cost due to the overhead. The percentages of cost due to overhead for a single step

calculation are depicted ill Figure 18. According to the test results, tile overhead can be as

high as 40 percent of the overall cost.

We also measure the difference in cost of constructing one streamline at a time and mul-

tiple streamlines. In one test, one hundred streamlines are constructed one by one. Thus,

no streamline scheduling or octant searching is required, and memory allocation is trivial

since only one octant and one streamline are resident in the main memory at any time.

The average cost of tracing a streamline is about 0.76 seconds under these circumstances.

On the other hand, the other test reveals the average cost of constructing 100 streamlines

concurrently is about 0.56 seconds per streamline. We observe a 26.3% improvement in per-

formance due to octant sharing, even though overhead is introduced in the multi-streamline

execution.

5.4 Local Disk versus Non-Local Disk

In our previous tests, all data is stored in a local disk of the workstations. In some environ-

merits, the data may be stored in a non-local disk of a file-server, which is connected with

the workstations via a network. In order to explore the effect of storing data in the non-local
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disk, we set up another set. of tests. We repeat tire tests described in Section 5.2 by using

the same data set. t]owever the data. is stored in a. non-local disk. Two sets of test results

are presented in Figures 19 and 20 and the penalty of using a. non-local disk is apparent.

The latency of the network significantly affects the overall performance. The percentage

of the cost resulting fl'om tire network latency is about 59 to 65% when the maximum octant

size is 10,000 cells. It increases to 68 to 76% when the maxinmm octant size is 40,000 cells.

The total cost. is increased by at least. 100%. Since the network is shared by several computers,

the program performance is very unstable. In general cases, the program performs better

when the maximum octant size is smaller. This is similar to the results reported in previous

tests. Again. the performance does not improve when more memory space is allocated. This

is because octant fetching becomes more frequent in order to fill the additional memory

space, which triggers more non-local disk I/O.

6 Conclusions

We have presented an efficient out-of-core algorithm for visualizing very large unstructured

vector field data sets on a single workstation with only moderate size of main memory. Using

an octree structure, the data sets are partitioned into subsets and stored in disk files. These

subsets are read into the main memory on demand and a. memory management policy is
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designed to allocate memory space for storing them. Tests are conducted t.o explore tile

performance of the algorithm and its implementation.

Test results demonstrate that the out-of-core algorithm enables interactive streamline

visualization of data sets of several millions of tetrahedral cells on an average workstation.

For example, for a data set with 1.78 million cells, the computational cost for constructing

100 streamlines concurrently, each of them with as many a.s 5,000 integration points, is below

25 seconds on a Sun SPARC-20 while only using 6.4 megabytes of its main melnory space.

We also show that the same visualization requirements cannot be achieved using virtual

menlory.

The use of a high-end workstation like a Sun Ultra SPAR(: or an SGI Indigo2 would

further increase the interactivity. The test results reveal that the performance of our program

is better when the data division is finer, block size level is higher, and the memory space

used is larger. We also show that the out-of-core program runs much faster when the data

are stored in a local disk.

Future work includes making use of the hardware rendering capability on a graphics

workstation, optimizing the preprocessing step and designing out-of-core algorit.hnas for other

types of visualization operations, such as surface and volume rendering.
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